
1. Introduction
About a quarter of the world's population relies on karst aquifers for drinking water (Hartmann et al., 2014), and 
one sixth depends on snowmelt water for agriculture and domestic supply (Barnett et al., 2005). In many arid 
and semi-arid mountainous areas in the western U.S., the northern China, the Middle East, and Mediterranean 
regions, snow recharged karst aquifers are the primary source of municipal and agricultural water supply (Andreo 
et al., 2006; de Jong et al., 2008; El-Hakim & Bakalowicz, 2007; Malard et al., 2016; Sweeting, 2012). In moun-
tainous regions in the western U.S., hydrology is dominated by winter snow accumulation and spring melt, with 
more than 70% of the runoff resulting from snowmelt (Li et al., 2017). Snowpack stores winter precipitation and 
supplies runoff water throughout the year. While peak runoff typically occurs in late spring or early summer, 
a large portion of snowmelt water is retained in groundwater stores and sustains summer streamflow. In many 
regions of the western U.S., summer baseflow, or streamflow contributed by snow recharged aquifers, is the 
primary source of water for irrigation, where demand peaks in late summer.

How watersheds respond to climate variability has been intensively investigated in catchments throughout the 
conterminous U.S. (Berghuijs et al., 2014; Harpold et al., 2012; Naz et al., 2016; Sturm et al., 2017), however 
few studies are focused on karst watersheds (Chen et al., 2018). Hydrologic behavior of karst systems can be 
characterized by a duality of flow and storage dynamics because of the juxtaposition of matrix (micropores and 
small fissures) and karst conduits (Hartmann et al., 2014). Rainfall and snowmelt recharge the karst aquifer from 
a combination of diffuse, slow infiltration into the rock matrix and concentrated, rapid infiltration through sink-
holes and vertical fractures (Taylor & Greene, 2008). Subsurface flow travel time varies in orders of magnitude 
between matrix portion and conduits. Therefore, the recharge and discharge processes in karst watersheds are 
nonlinear and heterogeneous (Hartmann et al., 2014).
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In an effort to understand karst watershed responses and connectivity, various modeling approaches have been 
applied. Existing spatially distributed karst models discretize the domain in two- or three-dimensional grids, and 
are capable of representing heterogeneity of hydraulic properties and state variables (Hartmann et al., 2014; Scan-
lon et al., 2003). However, the use of distributed models has been limited by high computational cost and demand 
for spatial information about the aquifer property and flow processes. A simpler, more cost-effective alternative 
is using lumped models that do not explicitly represent spatial variability. A lumped model can be based on 
one or more conceptualizations of the epikarst, karst conduit, and matrix flow processes (Chang et al., 2017; 
Mazzilli et al., 2017). The structure of these models (e.g., representation of conduit and matrix storages as linear 
or nonlinear reservoirs and interaction between reservoirs), is usually determined based on some specific water-
shed, and model parameters are adjusted through calibration. There are also studies that have constructed data-
driven models that inductively infer the transfer function from spatially aggregated input (e.g., precipitation) to 
output (e.g., discharge) using data fitting techniques such as multivariate regression and machine learning (Z. 
Li, Wrzesien, et al., 2017). However, these “lumped” machine learning models are not suitable for snow domi-
nated karst aquifers because of the spatially varying snowmelt, rainfall, and recharge processes that influence the 
hydrologic response and are controlled by complicated meteorological, topographic, and geologic heterogeneity. 
In addition, existing karst models require site-specific knowledge for configuring the conceptual model structure 
and parameterization (Chang et al., 2017; Hartmann et al., 2014), which limits the transferability of these models. 
This creates a clear need for a spatially distributed modeling approach that does not rely on site-specific knowl-
edge about subsurface characterization to set up.

Machine learning techniques are powerful tools for learning complex, nonlinear relations and have been applied 
in hydrology (Fleming, Garen, et al., 2021; Hsu et al., 1997; Shen et al., 2018; Solomatine & Ostfeld, 2008; Xu & 
Liang, 2021) and related fields such as agriculture (Liakos et al., 2018), meteorology (McGovern et al., 2017) and 
remote sensing (Gislason et al., 2006; Lary et al., 2016). For rainfall-runoff modeling in particular, artificial neural 
networks, decision trees, and kernel methods (e.g., support vector machines, Gaussian process regression) among 
others achieved comparable or better performance than conceptual hydrologic models in study areas with varied 
hydrologic regimes (Elshorbagy et al., 2010; Rasouli et al., 2012). Machine learning-based models are not depend-
ent on presumed conceptualization of the hydrologic processes within a given watershed and therefore less prone to 
model structural error. Successful application of conventional machine learning methods often requires considera-
ble effort and prior knowledge to curate a set of input variables that optimizes the performance of machine learning 
models, also known as feature engineering (Hastie et al., 2001; LeCun et al., 2015). On the other hand, it has been 
shown recently that incorporation of domain expertise into feature engineering has the capacity to encourage theo-
ry-guided machine learning (Fleming et al., 2015; Fleming & Goodbody, 2019; Karpatne et al., 2017) and improve 
the interpretability of the trained machine learning model (Fleming, et al., 2021a; 2021b).

Deep learning is a class of machine learning algorithms that typically uses feedforward neural network architec-
tures with more layers than a conventional neural network would have. Deep learning internalizes feature engineer-
ing via multiple levels of representation and has been shown to extract information from raw, high-dimension, and 
large datasets more effectively and objectively than conventional machine learning (LeCun et al., 2015). Two deep 
network architectures offer great potential for addressing the spatial and temporal complexities of karst aquifers. 
Long short-term memory (LSTM) networks, a type of recurrent neural network (RNN), has been a popular choice 
for sequential processes. It is capable of learning long-term dependencies that are typical for hydrologic processes 
(for example, Fang et al., 2018; Jia et al., 2019). For rainfall-runoff modeling, LSTM achieved accuracy compara-
ble to an established hydrologic model for a wide range of watersheds in the CAMELS data set (Addor et al., 2017; 
Kratzert et al., 2018, 2019). The second popular type of architecture, namely convolutional networks designed 
for multi-dimensional data (common in tasks such as image segmentation and object recognition) have also been 
shown to perform well in hydrologic applications (for example, Anderson & Radic, 2021; Mo et al., 2019; Pan 
et al., 2019; Sun et al., 2019). As geoscientific applications often deal with spatio-temporal dynamics, there is 
growing interest in blending LSTM and convolutional networks (Reichstein et al., 2019). The convolutional LSTM 
(ConvLSTM) architecture combines the strengths of LSTM in representing temporal dynamics and convolutional 
layers in extracting spatial patterns (Shi et al., 2015). ConvLSTM has been shown effective in capturing spatiotem-
poral dynamics such as those involved in precipitation nowcasting (Shi et al., 2015).

To further our understanding of karst hydrologic responses, we present a hybrid modeling approach capable of 
representing the spatial and temporal complexity for a snow dominated mountainous karst watershed in northern 
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Utah. More specifically, we apply a high-resolution snow model to capture the spatial and temporal variability in 
snowmelt, and the ConvLSTM model to simulate the response of streamflow to spatially and temporally varying 
snowmelt and rainfall. The hybrid models can be set up using off-the-shelf data and software tools. Through 
interpretative analyses, we also demonstrate ConvLSTM learned streamflow responses to spatially varying snow-
melt and rainfall.

2. Study Site
The Logan River Watershed is located in the Bear River mountain range of the Rocky Mountains on the Utah-
Idaho border. This study focuses on the canyon portion of the Logan River Watershed with an area of 581 km 2, 
mostly natural land cover (forest, rangeland) with little development. Average annual precipitation and potential 
evapotranspiration (PET) rates during the study period (1980–2019) are estimated to be 876 and 624 mm, respec-
tively. Most of the runoff volume comes from snow in winter, resulting in a snowmelt dominated hydrograph.

The watershed is underlain by variably karstified carbonate bedrock, with minor siliciclastic intervals, and karst 
topography. The Ordovician Garden City Formation (limestone) and Silurian Laketown Dolomite host most of 
karst development in the basin, but all units have the ability to transmit water via dissolution enhanced fractures, 
faults, bedding planes, and matrix porosity (Spangler, 2001, 2011). An important aquitard in the basin is the 
Swan Peak Formation (interbedded shales and quartz sandstone) that minimizes vertical groundwater movement 
between some of the karst layers and intersects the river in multiple places where springs are commonly found. 
The movement of groundwater is strongly influenced by faults and other structures such as the Logan Peak 
syncline (Bahr, 2016).

Within the watershed, rainfall and snowmelt recharge comes through (a) sinkholes and pits in meadow beds 
that are typically developed in high altitude areas, (b) seepage along losing reaches of the basin drainage where 
the streambed is comprised of permeable fluvioglacial deposits, and (c) diffuse infiltration into ridge slopes 
(Spangler, 2001). Discharge from the karst aquifer primarily occurs through major (Rick's, Wood Camp, and 
DeWitt) and minor (Benchmark, Logan Cave) springs along the Logan River. Recent research using mass and 
flow balances in the Logan River indicates that the bulk of summer low flow is sourced from karst conduits (Neil-
son et al., 2018). A large portion of Dewitt Spring discharge is diverted to supply drinking water for Logan City 
before entering the Logan River. Tracer studies have been conducted on the west side of the Logan River to estab-
lish subsurface connectivity of karst developed in multiple geologic units and the springs (Spangler, 2001, 2011). 
These studies indicate flow paths across topographic watershed boundaries occur and in one case, both inter- and 
intra-basin flow paths join to create Dewitt Springs (Water Canyon and Green Canyon, Figure 1). In order to 
account for this karst piracy across the topography divide, our study area includes buffering areas outside of the 
topographically delineated watershed boundary (Figure 1).

Within the vicinity of the Logan River Watershed there are currently 7 SNOTEL (SNOwpack TELemetry) stations 
in operation (Figure 1). The Franklin Basin and Tony Grove Lake stations have snow water equivalent (SWE) 
records throughout the study period, while the other five stations have a shorter period of record. Streamflow 
records of the Logan River since 1953 are provided by USGS gaging station 10109000 (the most downstream 
station in Figure 1). Upstream of the gaging station, the Highline Canal (USGS 10108400) (Figure 1) diverts a 
substantial portion of streamflow for agricultural, commercial, and urban irrigation purposes. Monthly use of 
Dewitt Spring discharge was obtained from Logan City and assumed to occur evenly over each month. The rates 
of the two diversions were added to streamflow records at USGS 10109000 to calculate the natural streamflow 
from the canyon and were used to train and validate the deep learning and reference models.

3. Methods
3.1. Physically Based Snow Model

In order to understand the spatiotemporal variability of the snow accumulation and melt processes, we use the 
Utah Energy Balance (UEB) snow model (Mahat & Tarboton, 2012; Tarboton & Luce, 1996) to calculate the 
outflow from the base of the snowpack due to melting and/or rainfall (denoted as 𝐴𝐴 𝐴𝐴 hereafter). The UEB model 
is forced by air temperature, precipitation, wind speed, humidity, and shortwave and longwave radiation. The 
model simulates the water (SWE, meltwater outflow, and sublimation) and energy (energy content and radi-
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ative, sensible, latent, and advective heat exchanges) of the snowpack at time steps sufficient to resolve the 
diurnal cycle (Tarboton & Luce, 1996). UEB represents the snowpack as a single layer, and therefore is more 
computationally efficient and has fewer parameters than more complex, multi-layer models such as SNOWPACK 
(Bartelt & Lehning, 2002) and SNTHERM (Jordan, 1991). Despite being relatively simple, UEB has comparable 
performance with more complex models (Rutter et al., 2009). In particular, it captures the snowmelt energetics 
in deep snowpacks (Hood & Hayashi, 2015), which is important for accurately modeling snowmelt (Etchevers 
et al., 2004).

We ran the UEB model at 100 m resolution and hourly time step for 38 water years (from 1 October 1980 to 30 
September 2018). The 100 m resolution allows for characterizing the topographically driven variability of snow 
accumulation and melt in the mountainous watershed at a reasonable computational cost. Our preliminary results 
suggest that increasing the grid size to 200 m would cause significant changes in peak SWE to south-facing or 
north-facing slopes, while reducing the grid size to 50 m caused negligible changes to SWE levels. Leaf area index 
(LAI) and forest canopy structure (major tree type) parameters were specified using the National Land Cover 
Database (NLCD) 2011 (Coulston et al., 2012; Yang et al., 2018). Canopy height data was obtained from NASA's 
LANDFIRE database (Nelson et al., 2013). All of the canopy data were remapped to UEB model grids at 100 
resolution. The UEB model was designed to be physically based and transferrable to different locations (Tarboton 
& Luce, 1996). Therefore, we did not calibrate the UEB model and used recommended parameter values in Mahat 
and Tarboton (2012), Tarboton and Luce (1996). A list of UEB parameters is provided in Table S1 in Supporting 
Information S1. The UEB simulated SWE is compared against observations at SNOTEL stations.

In order to generate the forcing data for the UEB model, the North American Land Data Assimilation System 
(NLDAS-2) Forcing Data set (Xia et al., 2012) was downscaled to 100 m following methods described in Liston 
and Elder (2006) and Sen Gupta and Tarboton (2016). More specifically, we linearly interpolated NLDAS forcing 
variables and applied adjustments based on UEB grid elevation, slope, aspect and curvature to account for the 
effects of complex terrain on spatial distribution of precipitation and other meteorological variables (Tyson, 2021).

Figure 1. The location (inset) and elevation of the study area. Also shown are the Logan River and its major tributaries (blue), 
the topographically delineated watershed boundary (gray), the model area boundary (black), SNOTEL stations (blue dots), 
USGS gage (dark triangle), diversion point of the Highline Canal (diamond), springs (squares). Arrows from dye-injection sites 
(dark dots) to springs show subsurface connectivity indicated by previous tracer tests (Spangler, 2001, 2011).
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Even after orographical adjustment, NLDAS precipitation was found significantly lower than observations at 
SNOTEL stations (Figure S1 in Supporting Information  S1). Therefore, we performed a linear precipitation 
bias correction following the method used in Sultana et  al.  (2014) and Sen Gupta and Tarboton  (2016). For 
each SNOTEL station we calculated an annual factor as the ratio between measured annual total precipitation 
from SNOTEL and orographically adjusted NLDAS at the corresponding UEB grid. The average of the annual 
factors of all available SNOTEL stations of a given year is applied to all UEB grids to scale the orographically 
adjusted precipitation. Temperature observations are available at 2–7 SNOTEL stations starting in the year 2000. 
A comparison with orographically adjusted NLDAS temperature did not reveal significant bias, therefore, bias 
corrections were not performed for temperature.

3.2. Deep Learning Karst Model

Next, a deep learning model was developed to simulate the hydrologic response of the karst watershed to rain-
fall and snowmelt (or 𝐴𝐴 𝐴𝐴 ) simulated by the UEB model. The deep learning model uses the Convolutional Long 
Short-Term Memory (ConvLSTM) architecture, which integrates convolution operation into LSTM to capture 
spatiotemporal dynamics (Shi et al., 2015).

LSTMs are a type of RNN that have proven powerful for learning long-term dependencies in various applica-
tions including rainfall-runoff modeling and streamflow forecasting (Kratzert et  al.,  2018,  2019a,  2019b; Lv 
et al., 2020; Tennant et al., 2020; Xiang et al., 2020). Each LSTM cell corresponds to one time step, repeats to 
form N recurrent layers, and retains past information in cell memory. The same weights are shared across time 
steps. In this study, we implemented the classical LSTM architecture (Hochreiter & Schmidhuber, 1997):

�� = �(����� +�ℎ�ℎ�−1 + ��) 

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑥𝑥𝑓𝑓𝐱𝐱𝑡𝑡 +𝑊𝑊ℎ𝑓𝑓ℎ𝑡𝑡−1 + 𝑏𝑏𝑓𝑓 ) 

𝑔𝑔𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑊𝑊𝑥𝑥𝑔𝑔𝐱𝐱𝑡𝑡 +𝑊𝑊𝑡𝑔𝑔𝑡𝑡𝑡−1 + 𝑏𝑏𝑔𝑔) (1)

𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑥𝑥𝑜𝑜𝐱𝐱𝑡𝑡 +𝑊𝑊ℎ𝑜𝑜ℎ𝑡𝑡−1 + 𝑏𝑏𝑜𝑜) 

𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡 ⊙ 𝑐𝑐𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ⊙ 𝑔𝑔𝑡𝑡 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⊙ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝑐𝑐𝑡𝑡) 

In the above equations, 𝐴𝐴 𝐴𝐴 is the logistic sigmoid function, 𝐴𝐴 𝐴 denotes element-wise multiplication, 𝐴𝐴 𝐱𝐱𝑡𝑡 is the input 
vector at current time step 𝐴𝐴 𝐴𝐴 , 𝐴𝐴 𝐴𝐴𝑡𝑡 is cell memory, 𝐴𝐴 𝐴𝑡𝑡 is hidden state, 𝐴𝐴 𝐴𝐴𝑡𝑡, 𝑓𝑓𝑡𝑡, 𝑜𝑜𝑡𝑡 are the input, forget, and output gates, 
respectively, and 𝐴𝐴 𝐴𝐴𝑡𝑡 is the cell input activation vector. 𝐴𝐴 𝐴𝐴  refers to weight matrices, and 𝐴𝐴 𝐴𝐴 denotes bias terms. While 

𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴 𝐴 𝐴𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴 are usually all vectors, here we follow the notation commonly used in deep learning literature. 
At each time step, the new input is combined with hidden state and cell memory from the previous time step to 
determine whether the new input will be accumulated to cell memory and whether the past cell memory will be 
forgotten. The output gate then determines whether the hidden state will be updated with the cell memory.

The classical LSTM applies fully connected input-to-state transition. This is suitable for spatially lumped rain-
fall-runoff modeling because the input dimension is low (e.g., equals to the number of climate forcings). With 
spatially distributed inputs, which would have a much higher dimension depending on the spatial discretization, 
the classical LSTM will have a large number of weights, a lot of which may be redundant. To reduce network 
complexity and account for spatial correlation structures, ConvLSTM uses convolution operation in input-to-state 
and state-to-state transitions:

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑥𝑥𝑖𝑖 ∗ 𝑋𝑋𝑡𝑡 +𝑊𝑊ℎ𝑖𝑖 ∗ 𝐻𝐻𝑡𝑡−1 + 𝑏𝑏𝑖𝑖) 

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑥𝑥𝑓𝑓 ∗ 𝑋𝑋𝑡𝑡 +𝑊𝑊ℎ𝑓𝑓 ∗ 𝐻𝐻𝑡𝑡−1 + 𝑏𝑏𝑓𝑓 ) 

𝑔𝑔𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑊𝑊𝑥𝑥𝑔𝑔 ∗ 𝑋𝑋𝑡𝑡 +𝑊𝑊𝑡𝑔𝑔 ∗ 𝐻𝐻𝑡𝑡−1 + 𝑏𝑏𝑔𝑔) (2)

𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑥𝑥𝑜𝑜 ∗ 𝑋𝑋𝑡𝑡 +𝑊𝑊ℎ𝑜𝑜 ∗ 𝑋𝑋𝑡𝑡−1 + 𝑏𝑏𝑜𝑜) 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ⊙ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ⊙ 𝑔𝑔𝑡𝑡 

𝐻𝐻𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⊙ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝐶𝐶𝑡𝑡) 
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In the above equations, 𝐴𝐴 𝐴𝐴𝑡𝑡 is the current input; the input, cell memory (𝐴𝐴 𝐴𝐴𝑡𝑡 ), and hidden state (𝐴𝐴 𝐴𝐴𝑡𝑡) are all multi-di-
mensional arrays and therefore upper cases were used. 2D convolutional operation is denoted by * and defined as 
below (Goodfellow et al., 2016):

�(�, �) = (� ∗ �)(�, �) =
∑

�

∑

�
�(� − �, � − �)�(�, �), (3)

where 𝐴𝐴 𝐴𝐴 is a two-dimensional input, 𝐴𝐴 𝐴𝐴 is the kernel, and 𝐴𝐴 𝐴𝐴 denotes the output or feature map with 𝐴𝐴 𝐴𝐴(𝑖𝑖𝑖 𝑖𝑖) denoting 
its 𝐴𝐴 𝐴𝐴𝐴𝐴 -th element.

In this study, we stack three ConvLSTM layers (Figure 2) for higher representation power. The input of each time 
step (1 day in this study) is an image of daily 𝐴𝐴 𝐴𝐴 (snowmelt and rainfall). A second version of the ConvLSTM 
model is implemented using both 𝐴𝐴 𝐴𝐴 and potential evapotranspiration (PET) as inputs. In both models, layer 1 
applies the convolution operation to the input(s) and 2 𝐴𝐴 ×  2 average pooling, that is, aggregation by calculating 
average of 2 𝐴𝐴 ×  2 pixel values. It also applies convolution to the hidden state from the previous time step. A second 
ConvLSTM layer then takes the hidden state 𝐴𝐴 𝐴𝐴𝑡𝑡

(1) (superscript denotes layer 1) as inputs and calculates the hidden 
state of layer 2, 𝐴𝐴 𝐴𝐴𝑡𝑡

(2) , which is used as inputs by layer 3. Finally, a fully connected layer processes the hidden 
states from layer 3 to generate streamflow of the following day, 𝐴𝐴 𝐴𝐴𝑡𝑡+1 . All convolution operation uses 3 𝐴𝐴 ×  3 kernels 
with 10 output channels and padding. In total, the one-input and two-input ConvLSTM models have 19,691 and 
20,051 learnable parameters, respectively. The ConvLSTM model is implemented in Apache MxNet, an open-
source deep learning framework (Chen et al., 2015).

Similar to Kratzert et al. (2018), a lookback of 365 days is used in this study. More precisely, the model uses 
𝐴𝐴 {𝑅𝑅𝑡𝑡−365, 𝑅𝑅𝑡𝑡−364, ..., 𝑅𝑅𝑡𝑡} (and 𝐴𝐴 {𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡−365, 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡−364, ..., 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡} for the two-input model) to simulate streamflow of 

the following day, 𝐴𝐴 𝐴𝐴𝑡𝑡+1 . We assume that 365 days should capture most of the streamflow variability at a reason-
able computational cost based on the high level of karstification of the Logan River Watershed. Previous tracer 
studies have suggested maximum groundwater travel times of 8–35 days from losing streams in high elevation to 
major springs within the watershed (Spangler, 2001, 2011). Longer term dependency due to watershed storage 
is handled by a two-stage training strategy that uses historical information to specify the initial cell memory and 
state at day 𝐴𝐴 𝐴𝐴 − 365 .

Figure 2. (a) Flowchart of the hybrid modeling approach. Snowmelt and rainfall simulated by the UEB model and PET are 
used as inputs to the ConvLSTM and three reference models. (b) The architecture of the deep learning karst model with three 
ConvLSTM layers. At each time step, the input passes through a convolution layer followed by pooling, and the hidden state 
of the previous step, 𝐴𝐴 𝐴𝐴𝑡𝑡−1, passes through a convolution layer before being used in the gates to calculate current cell memory, 

𝐴𝐴 𝐴𝐴𝑡𝑡 (Equation 2). The hidden state of layer 1 is used as inputs by layer 2, and the hidden state of layer 2 is used as inputs by 
layer 3. Finally, the hidden states of the 3rd layer of ConvLSTM at the current time step, 𝐴𝐴 𝐴𝐴𝑡𝑡

(3) , is flattened and fed into a fully 
connected layer to generate streamflow 𝐴𝐴 𝐴𝐴𝑡𝑡+1 .
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Directly using the high resolution (100 m) UEB simulation results as input would lead to high computational 
and memory cost as well as overfitting when training the ConvLSTM models. Therefore, we aggregated the 
UEB simulated snowmelt and rainfall on a given day (𝐴𝐴 𝐴𝐴𝑡𝑡 ) to 1.6 km resolution by taking the average of 𝐴𝐴 𝐴𝐴𝑡𝑡 
across all UEB grids within a 1.6 km by 1.6 km grid; this led to a matrix with reduced size (27 𝐴𝐴 ×  18) daily. 
Although coarsening is necessary due to the computational constraints, using a 100 m resolution UEB model 
enables characterizing the nonlinear topography effects on snowmelt intensity and timing, which is important 
for accurately simulating streamflow response. For example, within a 1.6 km by 1.6 km grid, deeper snowpack 
at high elevation and north-facing slopes melts late, while shallower snowpack at low elevation and south-fac-
ing slopes melts earlier. The prolonged snowmelt period resulting from a non-uniform snowpack is captured by 
the aggregated snowmelt (Figure S5 in Supporting Information S1). However, UEB simulation using a 1.6 km 
by 1.6 km grid would lead to a uniform snowpack and a shorter melt period than the non-uniform snowpack 
simulated at 100 m resolution. Next, PET rates were calculated using the Priestley-Taylor method (Priestley & 
Taylor, 1972) based on orographically adjusted climate forcings. Similar to the snowmelt, the PET rates were 
coarsened to a 1.6 km by 1.6 km resolution. All input and output data were linearly scaled to the range of (0,1) 
for the ConvLSTM model.

3.3. Reference Models

In addition to the ConvLSTM models, we use the UEB simulated snowmelt and rainfall and PET (both coarsened 
to 1.6 km) to drive three reference models to evaluate the strengths and weaknesses of more common modeling 
approaches.

3.3.1. LSTM

In order to assess the added value of the spatial information, we compare the performance between ConvLSTM 
and LSTM models, with the latter used as a lumped model that takes as input the spatially averaged daily 𝐴𝐴 𝐴𝐴 (and 
PET in the case of a two-input model). Therefore, the input of day 𝐴𝐴 𝐴𝐴 is either a scalar 𝐴𝐴 (𝑥𝑥𝑡𝑡 = 𝑅𝑅𝑡𝑡) or a two-element 
vector (𝐴𝐴 𝐱𝐱𝑡𝑡 = [𝑅𝑅𝑡𝑡, 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡] ). Similar to the ConvLSTM models, a lookback period of 365 days is used. Three LSTM 
layers are stacked, each layer having 20 hidden units. The one-input and two-input LSTM models have 8,581 and 
8,661 learnable parameters, respectively.

3.3.2. Random Forest

Using conventional machine learning methods for rainfall-runoff modeling has been intensively investigated 
(for example, Rasouli et  al.,  2012; Solomatine & Ostfeld, 2008). Conventional machine learning techniques 
require smaller training datasets than deep neural networks. However, these techniques are not as powerful in 
terms of extracting information from natural data in their raw form (LeCun et al., 2015). Therefore, a consid-
erable amount of effort needs to be taken for feature engineering, or creating a suitable set of features (inputs) 
from the raw data.

The Random Forest (RF) algorithm has been used successfully in various hydrologic applications (Naghibi 
et al., 2016; Xu et al., 2017) and other fields such as meteorology (Cloke & Pappenberger, 2008; He et al., 2016). 
A RF model consists of an ensemble of Classification and Regression Trees (CARTs) and outputs the mean 
prediction of individual trees. A CART tree is composed of a sequence of binary splits. Each split partitions the 
input space into two regions, and a constant value is fitted to each region. This recursive process stops when the 
number of observations at the terminal nodes (leaves) is fewer than a threshold (leaf size). As such, a CART 
estimates a piecewise constant function of the input variables. The RF algorithm trains each tree using a boot-
strap sample (sample with replacement) of the training data set; the data points left out can be used to calculate 
out-of-bag error as an estimate of generalization error. At each binary split, the RF algorithm samples a random 
subset of input features and identifies the best splitting feature within the subset by minimizing the sum of squares 
error. The size of the random subset is conventionally set to a third of the total number of input features (Svetnik 
et al., 2003), and the leaf size is tuned by minimizing the out-of-bag error. RF also measures the importance of 
input variables by calculating the increase in out-of-bag error when a given input is perturbed. Because of the 
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randomness introduced into the training process, RF is believed to be more robust than CARTs (Breiman, 2001; 
Hastie et al., 2001).

The RF structure does not inherently account for temporal dependency in that the output at time step 𝐴𝐴 𝐴𝐴 is 
completely determined by inputs at 𝐴𝐴 𝐴𝐴 . Theoretically, one can augment the inputs with historical information, that 
is, 𝐴𝐴 𝐱𝐱𝒕𝒕 = {𝑅𝑅𝑡𝑡−365, 𝑅𝑅𝑡𝑡−364, ..., 𝑅𝑅𝑡𝑡;𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡−365, 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡−364, ..., 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡} . However, the resulting high dimensionality will 
likely cause inferior generalization performance. Therefore, feature engineering was performed to create new 
features that contain information from the past, including dryspell (number of days since last day of effective 
rainfall or snowmelt), lagged moving window average time series of 𝐴𝐴 𝐴𝐴 , and accumulated 𝐴𝐴 𝐴𝐴 and PET (Table S2 
in Supporting Information S1). These features were selected based on correlation analyses between streamflow 
and time series with varying lags.

3.3.3. SAC-SMA

Given the broad-spread application of the Sacramento Soil Moisture Accounting (SAC-SMA) model (Burnash 
et al., 1973), it was selected as the conceptual hydrologic model. The SAC-SMA model is routinely used for 
rainfall-runoff forecasting including in the U.S. National Weather Service River Forecast System (Demar-
gne et al., 2014) and has been used as a benchmark for data-driven methods (Kratzert et al., 2018; Newman 
et al., 2015). Similar to Newman et al. (2015), streamflow routing was performed using a two-parameter unit 
hydrograph (Nash, 1957; Table S3 in Supporting Information S1). The unit hydrograph shape and scale parame-
ters, the scaling factor of PET estimated by the Priestley-Taylor method, and 16 SAC-SMA parameters (Table S3 
in Supporting Information S1) were calibrated. Although not designed for karst watersheds, the SAC-SMA model 
structure allows representing a variety of recession behaviors found in nature. In particular, it uses a primary 
lower zone free water reservoir that drains slowly to simulate long-term sustaining baseflow, and a supplementary 
lower zone free water reservoir that drains faster to simulate baseflow after rainfall/snowmelt events. The paral-
lel reservoirs resemble the structure of some conceptual karst models (Butscher & Huggenberger, 2008; Fleury 
et al., 2007) and may be able to represent the duality of storage and flow in karst conduits and matrix.

3.4. Model Training, Test, and Interpretative Analyses

We use streamflow data and UEB simulation results for 38 water years (WY), October 1980 to September 2018, 
to train/calibrate and validate the ConvLSTM and three reference models. For the ConvLSTM and LSTM models, 
the study period was divided into three segments: data during WY 1981–2007 are randomly partitioned into 
training and validation datasets (ratio = 8:1). During training, the generalization errors of the ConvLSTM and 
LSTM models are monitored on the independent validation data set, and training stops when the generalization 
error begins to rise. The training process seeks to minimize the sum of mean-square-error (MSE) and an 𝐴𝐴 𝐴𝐴2 norm 
of the learnable parameters as a penalty of model complexity. The weight of penalty is determined based on the 
validation loss. In addition, dropout is performed at a rate of 30% (Hinton et al., 2012). Training was performed 
once with cell memory and hidden state initialized to zero. We then run the trained model from the beginning of 
the study period to calculate the cell memory and state of each day, which carry historical information beyond 
the 1-year lookback. Next, the ConvLSTM and LSTM models are initialized with the calculated cell memory and 
state, and the training resumes until early stopping. The random forest model is trained using data of WY 1981–
2007 by minimizing MSE. The SAC-SMA model uses WY 1981–1984 as a spin-up period and WY 1985–2007 
for calibration. Calibration is performed by minimizing MSE using DREAM-ZS (Vrugt et al., 2009). We use 
streamflow during the test period (WY 2008–2018) to evaluate the performance of the trained/calibrated models 
based on four measures, including percent bias (PBIAS, Gupta et al., 1999), root-mean-square error (RMSE), 
Nash-Sutcliff efficiency (NSE), and Kling-Gupta efficiency (KGE) (Gupta et al., 2009).

Lack of physical feasibility has long been recognized as a primary drawback of machine learning and deep 
learning when being applied to hydrologic problems. Therefore, we examined how the trained/calibrated models 
represent the hydrologic behavior of the study watershed. We first analyzed the streamflow response to snowmelt 
pulses as simulated by all the models. A 4-year spin up period was first run with inputs equal to long-term aver-
age. Snowmelt pulses are then introduced by applying spatially uniform snowmelt at two different rates, 20 mm 
(lasting for 1 day) and 5 mm (lasting for 4 days). The resulting streamflow was then deducted by streamflow 
simulated with no pulse to calculate the difference (𝐴𝐴 Δ𝑄𝑄 ) as a function of time.
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To understand whether the ConvLSTM model provides a spatial understanding of recharge-discharge processes 
that the other models do not capture, we also performed a sensitivity analysis to examine the streamflow response 
to spatial snowmelt and rainfall (𝐴𝐴 𝐴𝐴 ) learned by ConvLSTM. Because of the prevalence of fast, concentrated 
recharge through sinkholes and fractures in the Logan River Watershed, we use 𝐴𝐴 𝐴𝐴 as the surrogate for recharge. 
More specifically, for each of the 27 𝐴𝐴 ×   18 grids we calculate the change in simulated streamflow on day 𝐴𝐴 𝐴𝐴  
(𝐴𝐴 Δ𝑄𝑄𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ) induced by adding a perturbation to snowmelt and rainfall of the 𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴 -th grid on days 𝐴𝐴 𝐴𝐴 − 𝑚𝑚𝑚…𝑚 𝐴𝐴 − 𝑛𝑛 . 
As such, a high sensitivity value is expected for recharge areas. Because the sensitivity is dependent on the status 
of the watershed as well as past climate conditions, we calculate the spatial sensitivity for streamflow on two 
separate days during spring runoff and summer recession, respectively.

4. Results
4.1. UEB Simulated SWE

We use the UEB model to simulate hourly SWE at a 100 m resolution across the study domain (Figure 3). The 
simulated SWE is compared with observations at SNOTEL stations (Figure 4). Overall, the UEB simulation 
underestimates SWE at the SNOTEL stations for most of the simulated years. The underestimation at the Tony 
Grove Lake and USU Doc Daniels stations can largely be explained by a discrepancy in precipitation. At the two 
stations the orographically adjusted NLDAS precipitation is substantially lower than SNOTEL measurements 
(Figure S1 in Supporting Information S1), and the spatially averaged annual bias correction factor did not fully 
remove the bias. In addition, the SNOTEL precipitation measurements used for bias correction are subject to 
wind-induced undercatch (Avanzi et al., 2014; Groisman & Easterling, 1994), while SWE may be overestimated 
due to snow drifting (Meyer et al., 2012) and interception redistribution. Because SNOTEL stations are often 
located in small forest clearings, snow intercepted by surrounding canopy may be redistributed to the snow 
pillow (Mahat & Tarboton, 2014). Therefore, the point-scale SWE measurements at the SNOTEL sites may not 
be representative of the corresponding UEB grid and tend to be higher. In addition to the uncertainties due to 
spatial scale mismatch (Chen et al., 2014), point-based SWE measurements may be subject to errors up to 30% 
(Schlögl et al., 2016). Given the presence of precipitation and SWE measurement biases, the UEB simulation 
captures the snow accumulation and melt processes reasonably well. Calibration tests suggested that tuning the 
UEB parameters within the physically feasible range did not substantially alter the UEB simulation results toward 
observations at SNOTEL stations.

4.2. Streamflow Simulated by ConvLSTM and Reference Models

As described in Section 3, two versions of ConvLSTM and LSTM models were implemented that use 𝐴𝐴 𝐴𝐴 both 
with and without PET. Including PET as a second input led to negligible differences in the performance metrics 

Figure 3. (a) Snow water equivalent on 15 Apr. 2009; (b) Accumulated snowmelt and rainfall (𝐴𝐴 𝐴𝐴 ) during 04/15/2009–05/14/2009; (c) Date when the snowpack 
completely melted in 2009. Black squares are the locations of SNOTEL stations (Figure 1).
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but spurious patterns being learned by the ConvLSTM and LSTM models. This confounding issue is further 
discussed in Section 5. Therefore, only the results obtained from one-input ConvLSTM and LSTM models forced 
by snowmelt and rainfall are presented. The RF and SAC-SMA models use both 𝐴𝐴 𝐴𝐴 and PET.

All models were able to simulate streamflow reasonably well (Table 1, Figures 5 and 6). Given that a PBIAS 
approaching zero, lower RMSE, and NSE and KGE approaching one indicate a better match between simula-
tions and observations, the ConvLSTM model performed the best during the test period (WY 2008–2018). The 

Figure 4. Daily snow Water Equivalent (SWE) observations at seven SNOTEL stations (Figure 1), with numbers in 
parentheses the elevation of each station. Also shown is the UEB simulated SWE (gray) of the model grid in which a station 
is located at the end of each day.
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Model

Train/Calibrate (1981–2007) Test (2008–2018)

PBIAS (%) RMSE (mm/day) NSE KGE PBIAS (%) RMSE (mm/day) NSE KGE

ConvLSTM 1.0 0.39 0.86 0.92 3.2 0.38 0.87 0.93

LSTM −1.0 0.42 0.84 0.87 −4.5 0.48 0.79 0.89

Random Forest −0.26 0.31 0.93 0.91 −13 0.49 0.78 0.81

SAC-SMA 0.21 0.38 0.87 0.91 −8.9 0.46 0.80 0.87

Table 1 
Percent Bias (PBIAS), Root-Mean-Square Error (RMSE), Nash Sutcliff Efficiency (NSE), and Kling-Gupta Efficiency 
(KGE) of the Modified ConvLSTM, LSTM, Random Forest, and SAC-SMA Models During the training and Test Periods

Figure 5. Observed streamflow and simulations (thick gray lines) given by ConvLSTM (a), LSTM (b), RF (c), and SAC-SMA (d) during the testing period (WY 
2008–2018). Streamflow is normalized by the topographically delineated watershed area.
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ConvLSTM model yielded similar training and test errors, suggesting drop out and 𝐴𝐴 𝐴𝐴2 regularization prevented 
the complicated model from overfitting. The LSTM, SAC-SMA and RF models show increasing degree of over-
fitting, as suggested by the larger difference between training and test performance metrics. A large negative 
PBIAS (overestimation) was found in predictions of the RF and SAC-SMA models.

Precipitation measurements at SNOTEL stations, subject to undercatch, were used to bias correct NLDAS precip-
itation. The underestimation of precipitation may propagate to the simulated snowmelt rates. Therefore, an “ideal” 
model is expected to yield a positive PBIAS in streamflow. The study area saw a declining trend of streamflow 
during the study period (slope 𝐴𝐴 = − 2.9 mm/year, 𝐴𝐴 𝐴𝐴 = 0.2 , Figure S3 in Supporting Information S1). Although the 
decline in the linear trend is not statistically significant, the average annual streamflow during the test period is 
5% lower than that of the training period. A similar trend was observed in streamflow simulated by ConvLSTM. 
In contrast, SAC-SMA simulated streamflow showed an increasing trend (4.5 mm/year), which partially explains 
the small calibration PBIAS and negative test PBIAS (overestimation). On the other hand, Figure 5 shows the 
machine learning models often overestimate winter low flows in dry years.

4.3. Spatiotemporal Streamflow Responses to Snowmelt and Rainfall

The streamflow difference (𝐴𝐴 Δ𝑄𝑄 ) simulated by the ConvLSTM and reference models show significantly different 
responses to snowmelt pulses with spatially uniform rates (20 mm for one day, and 5 mm for 4 days) (Figure 7). 
Overall, the streamflow recessions after snowmelt pulses simulated by the machine learning models are faster 
than the SAC-SMA model. The ConvLSTM model simulation shows two peaks, occurring at similar times as 

Figure 6. UEB simulated snowmelt and rainfall, observed streamflow, and simulations of ConvLSTM and three reference models for (a) a normal year (WY 2016) and 
(b) a wet year (WY 2017).
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the first two peaks simulated by RF. On the other hand, the RF model produced fluctuating streamflow response, 
likely an artifact of the lagged input features (Table S2 in Supporting Information S1). The streamflow differ-
ences responding to the 20 mm, 1 day snowmelt pulse simulated by the LSTM and SAC-SMA models are lower 
than 𝐴𝐴 Δ𝑄𝑄 responding to the 5 mm, 4 days pulse (Figures 7b and 7d). The streamflow difference simulated by the 
SAC-SMA model is substantially higher than the other models.

The spatial sensitivities calculated by applying weekly perturbation to daily snowmelt and rainfall rates show 
variability both in space and time (Figure 8). Spatial sensitivities for perturbations 3 weeks ago were similar to 
the two-week-ago results, while purturbations more than 3 weeks ago led to lower sensivity (Figure 7). Sensitivity 
is higher during spring runoff (27 May 2009) than the recession period in summer (1 August 2009). Spatially, 
higher sensitivity occurs near the west boundary and eastern part of the study area. The high sensitivity area on 
the west overlaps with the Logan Peak syncline, which controls the movement of groundwater on the west side 
of Logan River (Spangler,  2001). The subsurface connectivity revealed by previous tracer studies (Figure  1, 
Spangler, 2001, 2011) illustrate that the recharge area of the Dewitt Springs is consistent with the high sensitivity 
area during both spring runoff and recession periods. For Wood Camp and Rick's Springs, the recharge areas 
overall fall within the high sensitivity area of one-week-ahead perturbation. However, a portion of the areas shows 
negative sensitivity to perturbation 2 weeks prior. Because discharge rates of the other two springs (Benchmark 
and Logan Cave) are much smaller than the major springs and the Logan River, the sensitivity analysis may be 
unable to detect their influence.

5. Discussion
5.1. Performance of the Hybrid Modeling Approach

Results of high-resolution snow modeling show a high degree of spatial variability in melt rate and duration 
(Figure 3). In most of the study area, snow typically starts to melt in April and melt out in June, while at high 
elevations and north-facing slopes snowpack can last till next water year (Figure 3c). Methods such as temperature 

Figure 7. Time varying streamflow change (𝐴𝐴 Δ𝑄𝑄 ) induced by snowmelt pulses (blue: 20 mm for 1 day, red: 5 mm for 4 days) 
simulated by (a) Convolutional Long Short-Term Memory, (b) LSTM, (c) RF, and (d) SAC-SMA models. The pulses were 
introduced beginning at 𝐴𝐴 𝐴𝐴 = 0 . Note that the scale of the vertical axis in panel (d) is different from other panels.
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index commonly used in lumped and semi-distributed hydrologic models will likely be inadequate to character-
ize the high degree of spatial variability in complex terrains. It is worth mentioning that since machine learning 
models use inputs linearly scaled to (0,1), these models utilize “relative” information rather than absolute values. 
Despite this, the models need accurate representation of spatial and temporal variability in snow processes to 
accurately simulate streamflow and properly infer recharge-discharge patterns, because a deep snowpack would 
sustain streamflow later into summer than a more uniform and shallower snowpack. This highlights the impor-
tance of process-based modeling of the snow processes at a sufficiently high spatial resolution.

Figure 8. Spatial sensitivity calculated as the change of streamflow on day 𝐴𝐴 𝐴𝐴  (𝐴𝐴 Δ𝑄𝑄𝑇𝑇  ) when adding weekly perturbation to 
snowmelt and rainfall on days 𝐴𝐴 𝐴𝐴 − 𝑚𝑚𝑚…𝑚 𝐴𝐴 − 𝑛𝑛 , where 𝐴𝐴 𝐴𝐴  is 27 May 2009 (a–b) and 1 August 2009 (c–d), respectively. Warm 
color is expected for recharge areas. The dark gray lines along west boundary of the watershed show the axis of the Logan 
Peak Syncline. Dark lines show subsurface connectivity indicated by tracer studies (Figure 1, Spangler et al., 2001, 2011). 
The Logan River and tributaries are shown in blue.
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Overall, the ConvLSTM and three reference models all achieved satisfactory performance in simulating stream-
flow of the study watershed. One exception was found in WY 2017, during which all models yielded later 
recession than observed (Figure 6). In this year, the melt out dates simulated by UEB were 6–14 days later than 
observed at SNOTEL stations, likely due to uncertainties in NLDAS forcings.

Among the four models, ConvLSTM performed the best according to the performance metrics (Table 1) during 
the test period for the study watershed. ConvLSTM did particularly well during the spring runoff period due to its 
capability to capture streamflow responses to snowmelt/rainfall events (Figures 5 and 6). SAC-SMA also yielded 
high performance metrics, highlighting the capability of its design to represent a variety of recession behaviors 
found in nature. It is noteworthy that the SAC-SMA simulated streamflow is less sensitive to snowmelt events 
than the machine learning models and shows a slower recession (Figures 5 and 6).

The three machine learning models overestimated winter low flows in dry years (Figure 5). Observed low flow 
exhibits interannual variability (Figure 5, Figure S4 in Supporting Information S1). However, low flows simu-
lated by the machine learning models, especially ConvLSTM and LSTM, are relatively stable. Low flow (typi-
cally occurring in February) is correlated with peak SWE in the preceding two calendar years (Figure S4 Support-
ing Information S1). Although historical snowmelt information is contained in the 365-day lookback and initial 
cell states, the information appears to be overwritten by more recent inputs due to the long lag (7–8 months) 
between snowmelt and low flow. Watershed storage memory effects create a longer term dependency than what is 
commonly seen in conventional LSTM applications such as natural language processing. The results suggest that 
the LSTM architecture can capture the short term (e.g., within 1 or 2 months) recharge-discharge dynamics, but it 
may fall short on longer term dynamics in mesoscale watersheds like the Logan River. Recent advances in atten-
tion mechanisms that assign higher weights to important input elements (Qin et al., 2017; Vaswani et al., 2017), 
as well as multi-scale variants of LSTM (Gauch et al., 2021), may have the potential to enhance the capability of 
LSTMs to maintain information over a longer history. For example, multiple layers of ConvLSTMs or LSTMs 
can work in parallel to capture watershed dynamics at daily, seasonal, and annual scales. This will enable simu-
lating long-term watershed dynamics, which will help in understanding the resilience of snow-dominated moun-
tainous karst systems under climate variability. Compared to ConvLSTM and LSTM, the RF model performed 
slightly better during low flow periods, likely because the manually selected features enable the model to partially 
learn the relation between low flow and historical inputs. The SAC-SMA model captured most of the low flow 
interannual variability, although possibly due to wrong reasons as explained in Section 5.3.

5.2. Effects of Model Complexity and Sample Size on Predictive Capability

This study included four models with various structures and levels of complexity. For both ConvLSTM and 
LSTM models, the number of learnable parameters is greater than the sample size (number of training data 
points). The seeming “overparameterization” is common in deep learning applications and contributes to their 
high representation power. Concern of overfitting can be alleviated by employing regularization techniques. As 
a non-parametric regression technique, RF fits a piecewise constant function. Unlike the LSTM and ConvLSTM 
models that completely rely on the training process to learn their representation of the watershed dynamics, the 
RF algorithm is less effective with high dimensional inputs and requires domain knowledge for feature engineer-
ing. In contrast, the SAC-SMA model structure embeds the conceptualization of key physical processes. With 
19 calibrated parameters, the SAC-SMA model is much more parsimonious than the machine learning models. 
In this study, despite being able to reproduce the hydrograph well, the SAC-SMA model conceptualization that 
includes representing surface runoff and baseflow recession using separate reservoirs lacks sound hydrologic 
basis (Klemeš, 1986) especially for this karst watershed. Because SAC-SMA cannot fully resolve the dynamics 
of the karst watershed, the calibrated parameters may have compensated for model structural error (Doherty & 
Welter, 2010). Parameters may have also compensated for errors in UEB simulated snowmelt due to precipita-
tion undercatch at SNOTEL stations. Parameter compensation can lead to satisfactory test performance when 
the hydrologic conditions during the test period are similar to the conditions in the calibration period, but have 
deleterious implications otherwise (Doherty & Christensen, 2011). In contrast, highly parameterized models tend 
to be less prone to the deleterious impacts (Doherty & Welter, 2010). In addition, the structure of conceptual 
hydrologic models such as SAC-SMA may result in low degrees of freedom and thus limit the transferability of 
a calibrated model to other regions (Nearing et al., 2021).
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Previous studies, based on empirical evidence in other watersheds (Ayzel & Heistermann, 2021; Boughton, 2007; 
Yapo et al., 1996), suggested that the performance of conceptual rainfall-runoff models and deep learning models 
such as LSTM tend to reach a plateau when the calibration data is longer than a certain duration (e.g., 8–15 years, 
depending on watershed attributes and climatic conditions). While a comprehensive investigation of sample size 
effects is beyond the scope of the study, our preliminary analyses suggested a similar performance plateau for the 
RF model. The performance plateau may indicate the maximum information content these models can get from 
the data. This limit is affected by the performance criterion used for calibration/training (e.g., MSE, NSE, KGE, 
or likelihood) (Gupta et al., 2009; Yapo et al., 1996) as well as the representation power of the model structure. 
Because of the added complexity and capability to digest spatially distributed snowmelt, the ConvLSTM model 
can flexibly extract information of streamflow responses from streamflow records in an inductive, data-driven 
way that is not bound by assumptions embedded in conceptual or physically based hydrologic models. Therefore, 
it may benefit more from longer training periods than other models.

5.3. Is the Streamflow Response Learned by the Models Physically Sensible?

Amid the success of deep learning in terms of high predictive accuracy, there are emerging concerns regard-
ing spurious patterns being learned due to confounding rather than causal relationships (Kaushik et al., 2020). 
Confounding effects were found in the two-input ConvLSTM and LSTM models. Specifically, the trained models 
learned a positive correlation between streamflow and PET. This is not surprising because increases in temper-
ature lead to higher snowmelt, thus increasing streamflow. Meanwhile, warmer temperature means higher PET 
rates. While SAC-SMA “knows” that an increase in PET will produce a non-positive change in streamflow, 
machine learning models lack such physical knowledge. In this study, the two-output ConvLSTM and LSTM 
models were unable to distinguish the spurious correlation between streamflow and PET, due to temporal coin-
cidence, from the causal relationship between streamflow and snowmelt. The confounding effect underlines the 
need for physics informed constraints to prevent deep learning models from picking up such patterns. Mean-
while, RF with feature engineering is partially immune to the confounding effects. It learned negative correlation 
between streamflow with accumulated PET over the last 150 days, but positive correlation with PET in recent 
days (Figure S2 in Supporting Information S1).

While all models yielded similar streamflow simulation results, how they arrived at the result is quite different. 
The first peak in streamflow simulated by ConvLSTM and RF occurs shortly after the snowmelt events ended 
(Figures 7a and 7c) and may be related to “old” water pushed out of karst conduits and/or both infiltration excess 
(frozen soil, Niu and Yang, 2006) and saturation excess (during peak snowmelt, Kampf et al., 2015) overland flow. 
The second, lower peak occurs within the travel time suggested by previous tracer studies (Spangler, 2001, 2011) 
and thus likely corresponds to snowmelt event water arriving at the Logan River channel through karst conduits. 
In addition, overland flow and interflow (shallow flow through soil) (Carroll et al., 2019) may be intercepted 
by sinkholes and losing streams to enter karst conduits. According to the LSTM and SAC-SMA models, the 

𝐴𝐴 Δ𝑄𝑄 induced by a less intense but longer snowmelt event is higher than a more intense but shorter event. This 
is contradictory to the expectation that intense snowmelt/rainfall events would lead to flashy streamflow surge. 
The calibrated SAC-SMA model has relatively high depletion rates of lower zone primary and supplemental free 
water storages and a slow recession unit hydrograph (Table S3 in Supporting Information S1). As a result, the 
baseflow simulated by the SAC-SMA responds fast to snowmelt and rainfall. Because the tension water storage 
has been filled up before the pulse, fast baseflow recession produces higher streamflow peaks than simulated 
by the machine learning models. In contrast to fast baseflow recession, surface runoff and interflow are routed 
using the unit hydrograph, leading to an almost completely dissipated peak occurring more than 600 days after 
the snowmelt pulse. Because a larger portion of the 20 mm-intense snowmelt pulse becomes surface runoff, 
SAC-SMA simulated streamflow responding to 20 mm-intense snowmelt is lower than in the case of 5 mm-in-
tense snowmelt (Figure 8d). Similar phenomena, although to a lesser degree, was observed in the streamflow 
response simulated by the LSTM model. The differences in ConvLSTM and LSTM results suggest the value of 
representing spatial variability in snowmelt.

The streamflow recession after snowmelt pulses simulated by the machine learning models is faster than the 
SAC-SMA model (Figure 7). The fast recession simulated by the machine learning models likely caused the 
inability to capture the interannual variability of low flow (Figure S4 in Supporting Information S1). As discussed 
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in Section 5.1, the underlying reason may be the limitation of LSTM in representing long-term memory effects 
governed by watershed storage.

Examining the hydrologic behavior learned by the models shows the seasonal differences in sensitivities 
(Figure 8) that are consistent with the understanding that when watershed storage is at a higher level, a larger 
portion of rainfall and snowmelt will produce streamflow. In addition, the spatial patterns of sensitivity can 
be partially explained by the hydrogeology of the study area. The high sensitivity area on the west coincides 
with the high elevation portion of the outcrop of the Logan Peak syncline. In this area, sinkholes and faults 
developed in carbonate units form pathways for fast recharge and conduit flow. Noteworthy, positive sensi-
tivity was found in Water Canyon and Green Canyon (Figure 1), where tracer studies suggested karst piracy 
(Spangler,  2001,  2011). Such allogenic recharge (Hartmann et  al.,  2014) and transboundary flow would be 
challenging to capture using hydrologic models that rely on topographically delineated watershed boundaries. 
This also highlights the potential of the hybrid modeling approach to extend to other mountainous karst water-
sheds because it does not require prior information regarding transboundary karst flow. In addition to the major 
springs where the tracer studies have been performed, there are several springs on both sides of the Logan River 
near the Klondike Narrows SNOTEL station (Figure 1). While the recharge areas of these springs have not been 
mapped, they are likely consistent with the high sensitivity areas near the north end of the Logan River Syncline 
and north to the confluence with Beaver Creek (Figure 1). On the east of the Logan River, the east limb of the 
syncline outcrops, and the carbonate units are typically overlain by the Wasatch Formation, which can be highly 
faulted (Dover, 1995; Spangler, 2011). There are several known sinks and faults in this area (Figure 1; Kolesar 
et al., 2005), likely creating concentrated recharge to the karst aquifer. For example, the Temple Fork subwa-
tershed has several karst springs that may receive recharge from sinkholes in this area (Figure 1). On the other 
hand, some inconsistencies between the high sensitivity areas and a portion of the recharge areas of Wood Camp 
and Rick's Springs delineated by tracer studies (Spangler, 2001, 2011) are noticeable. The negative sensitivities 
found in this area (Figure 8) is counterintuitive because an increase in snowmelt and rainfall is usually expected 
to increase streamflow. The negative sensitivities may be related to losing condition along the Logan River 
reach between Wood Camp and Dewitt Springs, but could also suggest physical inconsistency of learned stream-
flow response to local snowmelt and rainfall. Despite this, the results overall show the potential for the hybrid 
modeling approach to infer spatial rainfall-discharge patterns from streamflow at the watershed outlet, which 
is the convolution of local recharge-discharge responses. The local responses are added up differently each 
year, because snowmelt and rainfall vary spatially and temporally, as captured by the UEB model. Therefore, 
the multi-year outlet streamflow contains information that enables “deconvolution” of the spatial recharge-dis-
charge patterns by the deep learning algorithm. When available, longer training period and discharge measure-
ments at the subwatershed scale may provide additional information and thus improve the physical consistency 
of the learned spatial patterns. Meanwhile, the identification of high sensitivity area by the ConvLSTM model 
can guide the design of future tracer studies to delineate recharge areas on the northern and eastern part of the 
watershed, which have not been studied yet.

Other studies have suggested connection between watershed storage dynamics and the input-to-state and state-to-
state transitions represented by LSTM and other RNNs (Jiang et al., 2020; Kratzert, Herrnegger, et al., 2019). In 
the context of ConvLSTM, the future state (related to water storage) at a grid is determined by the inputs (inflow) 
and current states at this grid and its neighbors. Snowmelt and rainfall falling on one grid may recharge and alter 
the local water storage and/or flow to a nearby grid via surface runoff. This is represented by the convolutional 
input-to-state transition. Meanwhile, convolutional state-to-state transitions correspond to the distribution of the 
water storage within the neighborhood via subsurface flow. The size of the neighborhood is determined by the 
kernel size and time step. Given a fixed time step (1 day in this study), a larger input-to-state kernel may be 
suitable for faster runoff, and a smaller state-to-state kernel represents slower subsurface flow. In this study, we 
have used 𝐴𝐴 3 × 3 kernels for all convolutional operations and stacked three ConvLSTM layers. In addition, while 
convolutional neural networks have achieved great success for image recognition, some of their design features 
such as spatial invariance may not be appropriate for hydrologic applications. For example, shifting the location 
of an object in a photo does not affect its label (e.g., “cat” vs. “dog”). However, recharge occurring at different 
locations will likely affect streamflow differently for karst watersheds. A potential direction of future work is to 
use process understanding to design deep learning architectures that can better represent temporal and spatial 
recharge-discharge patterns.
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6. Conclusions
A hybrid modeling approach is presented for simulating streamflow in a snow dominated mountainous karst 
watershed. The approach used a high-resolution energy balance snow model to characterize the high spatial 
variability of snow accumulation and melt controlled by the complex terrain and climate in these watersheds. 
The simulated snowmelt was then used to drive a deep learning model based on the ConvLSTM architecture 
that learns streamflow response to spatial and temporally varying snowmelt. The hybrid approach only requires 
meteorological forcing, topography, land cover, and discharge at the watershed outlet, all of which are available 
in national datasets. In addition, it does not rely on conceptualization of the rainfall-runoff processes, which are 
challenging for karst watersheds and site specific. As such, the hybrid models are easy to set up for other moun-
tainous karst watersheds without the need for altering the general model structure.

Based on a case study in the Logan River watershed, the hybrid models achieved satisfactory performance and 
outperformed three lumped rainfall-runoff models based on LSTM, Random Forest, and SAC-SMA, respectively 
during the test period. Furthermore, interpretative analyses revealed realistic spatial and temporal recharge-dis-
charge patterns learned by the ConvLSTM model. These patterns were relatively consistent with findings from 
previous hydrogeologic studies in this area. Our results suggest the potential for the hybrid modeling approach 
for simulating streamflow from snow dominated mountainous karst watersheds, particularly when there are needs 
for (a) higher accuracy than can be achieved by lumped models, and (b) representation of spatial patterns when 
detailed subsurface information is not available to support physically based distributed karst modeling.

Lastly, we highlight several points that need further investigation. First, the performance of the hybrid mode-
ling approach for other snow dominated, mountainous, karst watersheds and sample size effects on the perfor-
mance remain to be quantified. Due to its complexity, the ConvLSTM model may benefit from more training 
data, possibly from more watersheds, while the performance of conceptual rainfall-runoff models (SAC-SMA) 
and conventional machine learning algorithms (Random Forest) may have reached a plateau. Second, there are 
questions regarding how the incorporation of physical knowledge of watershed dynamics can be used to guide 
the configuration of deep learning architectures and improve the physical consistency of learned recharge-dis-
charge patterns. For example, spatial and temporal attention mechanisms may be a promising alternative to the 
ConvLSTM architecture to better represent spatially and temporally varying recharge-discharge patterns. Third, 
the learned recharge-discharge patterns can be further tested using field data (e.g., ion and isotope) in order to 
generate new understanding of the dynamics of snow dominated, mountainous, karst watersheds.

Data Availability Statement
All data used in this research are publicly available. The UEB software is available at https://hydrology.usu.edu/
dtarb/snow/snow.html. The data and code used for simulating streamflow are available at https://github.com/
pseudoszechwaniens/UEB_ConvLSTM_model/commits/v1.0.0 (https://doi.org/10.5281/zenodo.5719348).
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